Hammerstein system identification using nuclear norm minimization

نویسندگان

  • Younghee Han
  • Raymond A. de Callafon
چکیده

This paper presents a new method for the identification of Hammerstein systems. The parameter estimation problem is formulated as a rank minimization problem by constraining a finite dimensional time dependency between signals. Due to the unknown intermediate signal, the rank minimization problem cannot be solved directly. Thus, the rank minimization problem is reformulated as an intermediate signal construction problem. The main assumption used in this paper is that static nonlinearity is monotonically non-decreasing in order to guarantee a unique combination of a static nonlinear block and a Finite Impulse Response (FIR) linear block. The rank minimization is then relaxed to a convex optimization problem using a nuclear norm. The main contribution of this paper is that the proposed method extends the rank minimization approach to Hammerstein system identification, and does not need a bilinear parametrization and singular value decomposition (SVD), which are commonly used in two-step approaches for Hammerstein system identification. © 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subspace Identification of Multivariable Hammerstein and Wiener Models

In this paper, subspace-based algorithms for the simultaneous identification of the linear and nonlinear parts of multivariable Hammerstein and Wiener models are presented. The proposed algorithms consist basically of two steps. The first one is a standard (linear) subspace algorithm applied to an equivalent linear system whose inputs (respectively outputs) are filtered (by the nonlinear functi...

متن کامل

Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery

Low-rank matrix recovery has found many applications in science and engineering such as machine learning, signal processing, collaborative filtering, system identification, and Euclidean embedding. But the low-rank matrix recovery problem is an NP hard problem and thus challenging. A commonly used heuristic approach is the nuclear norm minimization. In [12,14,15], the authors established the ne...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Interior-Point Method for Nuclear Norm Approximation with Application to System Identification

The nuclear norm (sum of singular values) of a matrix is often used in convex heuristics for rank minimization problems in control, signal processing, and statistics. Such heuristics can be viewed as extensions of l1-norm minimization techniques for cardinality minimization and sparse signal estimation. In this paper we consider the problem of minimizing the nuclear norm of an affine matrix val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012